

HORIZON BEND

Ver.1 04.02.2016

Introduction

Horizon Bend (HB) is an editor extension for Unity3D, which is hopefully will

help you to create «horizon bending» effect in your project and resolve concomitant

problems.

Fig.1 Scene without bending

Fig.2 Scene with XZ Y-up bending

HB has various configurations allowing you to bend objects in your scene

along different axes.

HB contains about 100 modified shaders (Standard, Terrain, Nature, Legacy,

Mobile, Particles, etc.) The difference with original shaders lies in modification of vertex

program. We use well-known approach and offset vertices using the function of

parabola. Input of this function based on current HB configuration, bending parameters

and position of camera.

There are four main problems may occur when using horizon-bending effect and

all of these problems have resolution:

1. Undesired frustum culling;

2. Irrelevant rays returned by Camera.ScreenPointsToRay function;

3. Straight lines of LineRenderers;

4. Irrelevant point/spot light positions;

Package Structure

HorizonBending Package is located in Assets/Battlehub/HorizonBending

Package does not include files with *.shader ext to prevent immediate shader

compilation. Instead we use *.hbst files (hbst stands for horizon bend shader template).

Shader templates are located in Assets/Battlehub/HorizonBending/Shader/_Templates

folder. They are used by Horizon Bend Configurator (see next section) to create

shader files with required functionality. Templates is almost the same as the original

shaders, the only difference is horizon bending functionality. If you do not need some

of shaders in your project, you could simply remove corresponding hbst files. It

could signigicantly reduce compile time.

Editor folder contains ExecuteOnStart script which is used to display Configurator

window right after import. ExecuteOnStart will be automatically removed from project.

Fig.3 Package Structure

Configuration

Horizon Bend Configuration window, will be opened right after you import

Horizon Bend package to your project. Alternatively, you can access this window using

Tools->Horizon Bend->Configure menu item

Fig.4 Configuration window

We need this configurator to avoid multicompile and multiple shader variants.

However, you can always choose “Multicompile” profile and all shaders will be created

with #pragma multicompile directive. Although all configurations will be accessible, it

could take a huge amount of time to compile shaders with all features. We suggest you

to use “One Shader Feature” profile, which is default.

To choose required variant you should use «World Up Axis» dropdown and

«Bend Axis» dropdown. All HB Configurations are shown in Fig. 5.

Fig.5 Different HB Configurations

Menu

There are five menu items:

1. Configure is to open Configuration window.

2. Apply is to apply horizon bending to all applicable objects and materials in

scene and to create HB.prefab with HB Script attached. HB Script allows

you to control horizon-bending parameters. (In current version Undo won’t

work, use Remove menu item instead)

3. Remove used to undo things made by Apply command.

4. Create prefab. Why use this menu item? See corresponding section.

5. Subdivide mesh used to increase vertices count of selected meshes.

Fig.6 Menu

Apply

If you click Apply then HBEditor.Apply() method will be invoked.
This method do following:

1. Backup HB settings if HB gameobject instantiated

2. Make shallow rollback

3. Find all materials and game objects with renderers in scene

4. Group renderers by mesh and transformation (to work with meshes per

group not per object)

5. Replace Default materials ‘Default-Material’, ‘Default-Particle’, etc.

(because there is no way to save changes to these materials)

6. Replace original shaders with horizon bending shaders (prefixed with HB_)

(To find replacement shaders we use name comparison)

7. Create HBFixBounds components and attach them to suitable objects

8. Fix bounds of objects with HBFixBounds component (FixBounds method)

9. Apply default horizon bending settings

10. Restore settings from backup if exist.

Create Prefab

Horizon Bend could modify meshes in some cases. You can drag and drop your

object to prefabs folder, but prefab will be unable to find modified mesh. Use create

prefab menu item instead. First, it will save modified meshes then it will create prefab or

override existing prefab. Created prefabs located in Battlehub\HorizonBending\Prefabs

Subdivide

It is important to know, why do you need to subdivide meshes in some cases?

Suppose, you have a big quad in your scene. It used as a floor of the level in your

game. As you know, mesh of the Quad primitive has only four vertices. You probably

already figured out that if you apply horizon-bending then all vertices of the quad will be

moved down using same offset. Look at the Fig.7.

Fig.7 Quad primitive as a Floor

This is not what we want. To resolve this problem use Subdivide menu item.

Fig.8 Subdivided quad

Curvature, Flatten, HorizonOffset

To control horizon bending you can use following properties of HB script:

1. Curvature parameter controls degree of steepness of parabola. If set to 1 then

at distance of ~63 units there will be ~1 unit offset

2. Flatten parameter controls size of flat area.

3. HorzionXOffset, HorizonYOffset and HorizonZOffset parameters is used to

control offset of the vertex of parabola

Fig.9 Curvature 60, Flatten 10

Objects Disappear

Horizon bend may cause undesired frustum culling side effect.

Here is the example:

Fig.10 Undesired frustum culling

There is two solutions of this problem. First is to increase object bounds, second is

to increase camera field of view (or orthographic size in case of orthographic camera)

Fixing Object Bounds

Bigger bounding boxes can prevent frustum culling. To increase size of bounding

boxes select game object with name ‘HB’ in hierarchy. If you unable to find this game

object click Tools->Horizon Bend->Apply. You will see following:

Fig.11 HB Script properties

Fix Bounds Radius is a radius of circle around camera with objects inside. These

objects are garanteed to be visible and won’t accidently dissapear (if they remains

inside of this circle). The greater this value the bigger bounding box will be. You should

keep it as low as possible. When you click Apply button, bounds of all suitable objects

will be fixed. To do this, HB will invoke HBFixBounds.FixBounds method of

HBFixBounds component on suitable objects.

Fig.12 Increasing Fix Bounds Radius

HBFixBounds

If you for some reason want to fix bounding box manually do following: select

object with HBFixBounds component, select Override Bounds, specify Bounds, select

Lock and click FixBounds button.

Fig.13 Overriding Bounds

HBFixBounds behave differently for static, non-static and object’s with

SkinnedMeshRenderer.

To modify bounds of non static objects HBFixBounds use Mesh.bounds property.

To fix bounds of static objects HBFixBounds use slightly different approach. Each

submesh of static game object is combined with so called “FixBoundsMesh”.

FixBoundsMesh contains eight zero area triangles. Yes, to trick static batcher we

actually need triangles not dead end vertices. SkinnedMeshRenderer.localBounds fixed

at runtime.

Fig.14 Defferent types of fixed bounding boxes

Particle System disappear

With particle system we need to take different approach. There is no accessible

bounding box. We can edit pivot property of PS Renderer but it will cause big troubles

with Stretched billboards. Alternatively we can scale up particle system and then undo

scale in vertex program, but we believe this is not very good approach.

To prevent particle system frustum culling perspective camera field of view (or

orthographc camera orthographic size) need to be changed.

Find ‘HB’ object and select it. Set Fix Field Of View property to positive value.

This value will be added to effective camera field of view during OnPreCull.

Original field of view value will be restored OnPreRender. This functionality can be

found in HBCamera.cs. NOTE: HBCamera component automatically added to all

cameras in scene. It is important to keep Fix Field Of View value as low as

possible!

Fig.15 Fixing field of view

Terrain or grass disappear

Use the same approach as with particle system. It is important to keep Fix Field

Of View value as low as possible!

Raycasting

In general case all raycasting code does not need to be changed. The exception is

the code which create rays based on user input. For example you may use

Camera.ScreenPointToRay to create picking ray, or use Camera.forward to create

aiming ray. Look at the next picture.

Fig.16 Raycasting

Ray created by Camera.ScreenPointToRay won’t work because it goes through

point where object is rendered but not actually located. Object collider is not affected by

horizon bend and remains in different place. Physics.Raycast won’t hit any objects.

To resolve this problem use HB.ScreenPointToRays and HB.Raycast methods.

Both methods are controlled by HB.RaycastStride property and HB.FixBoundsRadius

property of HB script. FixBoundsRadius property specifies radius inside of which

raycasing is performed. RaycastStride specifies how precise raycasting will be (Larger

values -> smaller precision. Keep this value as large as possible)

Here is the sample code from RaycastTest.cs file:

if(Input.GetMouseButtonDown(0))
{

HB.DebugScreenPointsToRay(Camera.main);
Ray[] rays;
float[] maxDistances;
HB.ScreenPointToRays(Camera.main, out rays, out maxDistances);

RaycastHit hitInfo;
if(HB.Raycast(rays, out hitInfo, maxDistances))
{

//Transform point to horizonbending space
hitInfo.point -= HB.GetOffset(hitInfo.point, Camera.main.transform);

Debug.Log(hitInfo.transform.gameObject.name);
}

}

LineRenderer

In some cases problem with line renderers may arise. This problem is the same as

with low poly meshes. Look at the Fig.17

Fig.17 LineRenderer problem (left) and solution(right)

To fix problems use following method

HB.FixLineRenderer(lineRenderer, start, end);

HB.FixLineRenderer method use HB.RaycastStride property to control LineRenderer

precision (higher value -> less precision)

Pointlights and Spotlights

If you want to move pointlight or spotlight to horizonbending space you should add

HBFixLightPosition script to it. Then you must specify camera by setting

HB.FixLightPositionCamera property. Note: As you may notice with this script you

can set positions of lights relative to single camera. This could be a serious

limitation if you rendering using more than one camera at the same time.

Fig.18 Fix Lights Position Camera property

Custom Shaders

Horizon Bend package has replacements for almost all standard Unity3D 5.3.0

shaders (including legacy, terrain, nature, particles, etc). However this is common

situation when your project has it’s own custom shaders.

To integrate your shader to HB you should do the following:

1. Open *.shader file and determine type of shader.

http://docs.unity3d.com/Manual/SL-Reference.html

2. If your shader is fixed function shader you have to rewrite it…

3. If your shader is surface shader or fragment/vertex shader you should insert

#include "Assets/Battlehub/HorizonBending/Shaders/CGIncludes/HB_Core.cginc" between

CGPROGRAM and ENDCG

4. If your shader is surface find #pragma surface and add vertex:hb_vert to the end

of the line

5. If your shader is fragment/vertex insert HB(v.vertex) into beginning of vertex

program (if you have float4 posWorld variable defined use

HORIZON_BEND(v.vertex, posWorld))

6. Add your shader to CustomShaders array of HB script

7. Update HB.prefab located in Assets\Battlehub\HorizonBending\Prefabs\HB

folder

Fig.19 Custom Shaders Array

http://docs.unity3d.com/Manual/SL-Reference.html

Lock Materials

If you want to restrict access to certain materials then remove them from

Materials array of HB script and select LockMaterials. Then click Apply.

Fig.20 Lock Materials

Exclude GameObjects

You may want to prohobit modifications of some game objects by HB script. Just

drag them into HB.ExcludeGameObjects array

Fig.21 Exclude Game Objects

Attach To Camera

If selected then rendering behavior is the same as in the final build. Unselected

state is useful for debugging and navigation in sceneview. NOTE: AttachToCamera is

set to true atomatically when you hit play. To prevent this find and comment

following line in HB script //AttachToCamera = Application.isPlaying;

HB Script

static class in Battlehub.HorizonBending

Description

HB class implements main functionality of a package (horizon bending and

material/object management)

Static Functions

Apply Horizon Bending Parameters

1) public static void ApplyCurvature(float curvature)

2) public static void ApplyFlatten(float flatten)

3) public static void ApplyHorizonOffset(float horizonX, float horizonY, float horizonZ)

4) public static void ApplyAll(float curvature, float flatten, float horizonX, float horizonY,

float horizonZ)

Change Horizon Bending Parameters using delta

5) public static void ChangeCurvature(float delta)

6) public static void ChangeFlatten(float delta)

7) public static void ChangeHorizonOffset(float deltaX, float deltaY, float deltaZ)

Make Bounding Boxes larger

8) public static void FixSkinned(SkinnedMeshRenderer skinned, Vector3 extents)

9) public static void FixSkinned(SkinnedMeshRenderer skinned, float fixBoundsRadius)

10) public static void FixBounds(MeshFilter meshFilter, Vector3 extents)

11) public static void FixBounds(MeshFilter meshFilter, float fixBoundsRadius)

12) public static void FixMesh(MeshFilter meshFilter, Vector3 extents)

13) public static void FixMesh(MeshFilter meshFilter, float fixBoundsRadius)

Increase vertices count of lines

14) public static void FixLineRenderer(LineRenderer lineRenderer, NavMeshPath path)

15) public static void FixLineRenderer(LineRenderer lineRenderer, Vector3 start, Vector3 end)

Get Settings

16) public static HBSettings GetSettings(bool attachToCameraInEditor)

17) public static HBSettings GetSettings()

Get vertex offset caused by HB at specified position relative to camera

18) public static Vector3 GetOffset(Vector3 atPosition, Transform cameraTransform)

Equivalent of Camera.ScreenPointToRay

19) public static void ScreenPointToRays(Camera camera, out Ray[] rays, out float[] maxDistances)

Convert camera position and camera forward to array of rays

20) public static void CameraToRays(Transform camerTransform, out Ray[] rays, out float[]

maxDistances)

Raycast using results of ScreenPointsToRays or CameraToRays function

21) public static bool Raycast(Ray[] rays, out RaycastHit hitInfo, float[] maxDistances, int

layerMask = 0x7FFFFFFF)

Raycast all using results of ScreenPointsToRays or CameraToRays function

22) public static List<RaycastHit> RaycastAll(Ray[] rays, float[] maxDistances, int layerMask)

Transform RaycastHit.point to HorizonBending space

23) public static RaycastHit FixRaycastHit(RaycastHit hit, Transform cameraTransform, Vector3

rayOrigin)

Transform RaycastHit.point to HorizonBending space and fix distance

24) public static RaycastHit FixRaycastHitDistance(RaycastHit hit, Vector3 rayOrigin)

Supported Shaders

1) Standard

2) Standard Specular

3) Legacy (Opaque, Lightmapped, Reflective, SelfIllumin, Transparent, Cutout)

4) Particles and Particle Systems

5) Mobile (including Particles)

6) Nature (SpeedTree, SoftOcclusion, TreeCreator)

7) Terrain (Diffuse, Specular, Standard, BillboardTree, Grass)

8) Glass Refraction

9) Projectors

10) Tesselation Shaders

11) Toon Shading

12) Unlit

13) Sprites

14) Water

15) UI (Default and DefaultFont only)

16) Several custom shaders in HBCustomShaders.unitypackage

Limitations and Issues

Battlehub/Legacy Shaders/HB_VertexLit no specular color

Battlehub/Legacy Shaders/Transparent/HB_VertexLit no specular color

Battlehub/Legacy Shaders/Transparent/Cutout/HB_VertexLit no specular color

Battlehub/Legacy Shaders/Self-Illumin/HB_VertexLit no emission

Battlehub/Legacy Shaders/Ligthmapped/HB_VertexLit no specular color

Reflection in water shaders may work wrong

HB.FixFieldOfView positive value with forward rendering path may cause

point and spotlight clipping (to address this issue light range should be

increased)

HBFixLightPosition script can set positions of lights relative to single camera. It

could be a serious limitation if you rendering using more than one camera at the

same time.

Support

Thank you for your time, review and support.
If you have any questions, suggestions or you want to talk please send mail to

Vadim.Andriyanov@outlook.com or Battlehub@outlook.com

I will be much appreciate if you could help me to edit this document and fix

grammar and other mistakes.

mailto:Vadim.Andriyanov@outlook.com
mailto:Battlehub@outlook.com

